Réaction de R_FI ($R_F = C_n F_{2n+1}$, n = 4, 6, 8) en présence de zinc avec les acétates de vinyle et d'allyle: application à la synthèse de diols à chaînes fluorées

Ph. Laurent, H. Blancou* et A. Commeyras

Laboratoire de chimie organique, U.R.A.-C.N.R.S. no. 1097, Université Montpellier II, Place E. Bataillon, 34095 Montpellier Cédex 5 (France)

(Reçu le 2 avril 1992; accepté le 5 août 1992)

Abstract

The effect of various solvents on the addition of R_FI to vinyl and allyl acetates in the presence of zinc has been studied. The orientation of the reaction towards a dimerisation process has allowed the synthesis of the 1,4-bis(perfluoroalkyl)butane-2,3-diols and 2,3-bis(perfluoroalkyl methyl)butane-1,4-diols in quite good yield.

Résumé

L'influence de divers solvants vis à vis de l'addition de R_FI à l'acétate de vinyle en présence de zinc a été étudiée. L'orientation de la réaction vers un processus de dimérisation a permis la synthèse des 1,4-bis(perfluoroalkyl)butane-2,3-diols avec d'assez bons rendements. La transposition de cette réaction à l'acétate d'allyle a été utilisée pour préparer les 2,3-bis(perfluoralkyl méthyl)butane-1,4-diols.

Introduction

La présence de groupements carbonés riches en fluor (hydrophobes et oléophobes) et de groupements hydroxylés (hydrophiles) confère aux diols hautement fluorés des propriétés particulières applicables au domaine des tensioactifs.

Par ailleurs, la présence de deux fonctions hydroxylées dans ce type de composés, peut permettre leur insertion dans des polymères: polyuréthanes ou polyesters possédant des propriétés de surface remarquables.

Peu de synthèses, à ce jour, rendent les diols fluorés aisément accessibles; toutefois diverses molécules ont été décrites.

Quatre types de composés illustrent à nos yeux, ces molécules, obtenues avec plus ou moins de difficultés:

^{*}Auteur auquel la correspondance doit être adressée.

Type 1		Type 2
$HO(CH_2)_p(CH)_o(CX_2)_m(CF_2)_n$	$(\mathrm{CX}_2)_m(\mathrm{CHX})_o(\mathrm{CH}_2)_{p'}\mathrm{OH}$	CF ₃ CF ₃
$\mathbf{X} = \mathbf{Cl}$		но-с-«)-с-он
m = 1	m = 0	$CF_3 \leftarrow CF_3$
n = 1	n=3	R
o = 1	o = 0	R = H [4a]
p = p' = 1 [2]	p = 1, p' = 2 [3]	$R = R_F $ [4b]
Type 3		Type 4
$C_nF_{2n+1}(CH_2)_m - CH - CH_2$		Ŗ
HO OH		$C_n F_{2n+1} (CH_2)_m - C_p - (CH_2)_p OH$
m = 0 [1]		$C_{-}F_{2-1}(CH_{2})_{-} - C - (CH_{2})_{-}OH$
m = 1 [5]		
		R
		R=H $p=0, m=1$ [6]
		$R = CH_3$ $p = 0$, $m = 0$ [7]
		R = H $p = 1, m = 0$ [8]

Diols de type 1: ces molécules sont caractérisées par une chaîne polyfluorée α , ω dihydroxylée. La chaîne polyfluorée peut comporter d'autres atomes d'halogènes (chlore par exemple) [2]. Ces molécules sont préparées par diverses méthodes: réaction organométallique avec des diesters, condensation aldolique et pour les dérivés fluorochlorés: télomérisation [2].

Diols de type 2: ces molécules comportent des groupements trifluorométhyl en α du groupement hydroxy. Elles peuvent aussi comporter des groupements perfluoroalkyl au niveau du noyau aromatique. Ces composés sont préparés par réaction du benzène avec l'hexafluoroacétone en présence d'acide de Lewis et perfluoroalkylation éventuelle du noyau aromatique au moyen de cuivreux [4a, b].

Diols de type 3: ces molécules comportent un groupement éthylène glycol et une chaîne fluorée. Elles sont préparées à partir des époxydes à chaînes polyfluorées ou par oxydation d'oléfines $R_FCH=CH_2$ [1, 5a, 5b].

Diols de type 4: ces diols comportent deux chaînes perfluoroalkylées. Un composé est décrit sous forme de diacétate, il résulte de l'addition radicalaire, initiée par l'AIBN, de R_FI à l'acétate de vinyle, suivie de dimérisation très partielle au cours de réactions de réduction par le zinc en milieu protique [6].

TABLEAU 1

Les différents types de diols fluorés

C'est dans ce contexte que nous proposons une synthèse relativement simple de diols de type 4. Une réaction d'addition-dimérisation de $R_{\rm F}I$ $(R_{\rm F}=C_nF_{2n+1})$, en présence de zinc, respectivement aux acétates de vinyle et d'allyle, dans des solvants apolaires, conduit, avec des bons rendements aux acétates des diols qui sont ensuite hydrolysés.

Résultats et discussion

Au laboratoire, il a été mis en évidence la réaction de $R_{\rm F}I$ avec des composés insaturés, en présence de zinc, dispersé dans des solvants protiques [9]. Ces réactions (1) conduisent à la formation de composés d'addition-réduction de $R_{\rm F}I$ à l'insaturation (1b) (composés majoritaires) et de composés d'addition-dimérisation (1c) (composés minoritaires).

$$R_{F}I + CH_{2} = CH-Y \xrightarrow{Zn} H^{+} + CH_{2} = CH-Y \xrightarrow{Zn} H^{+} + CH_{2} = CH-Y \xrightarrow{Zn} H^{+} + CH_{2} = CH-Y \xrightarrow{R_{F}-CH_{2}-CH_{2}-CH-Y} + CH_{2} = CH-Y \xrightarrow{I} (1c) (10-30\%) = R_{F}CH_{2}-CH-Y \xrightarrow{I} (1c) (10-30\%) = R_{F}CH_{2}-CH-Y = CH-Y = CH$$

D'autre part, Brace [6] avait montré, précédemment, qu'il est possible d'additionner R_FI par initiation radicalaire au moyen d'AIBN à des oléfines fonctionnelles* (par exemple l'acétate de vinyle) pour produire le dérivé polyfluoroalkyliodé $R_FCH_2CHIOAc$ (2a), celui-ci peut être réduit par du zinc pulvérulent, en milieu protique, pour produire l'acétate polyfluoré R_FCH_2 - CH_2OAc (1b avec Y=OAc ou 2b). Cette réduction conduit à de faibles proportions (23%) de diacétates polyfluorés (1c avec Y=OAc ou 2c) résultant d'une réaction de type Wurtz de 2a [réaction (2)]:

^{*}Plus récemment Chen *et al.* [10] montraient la capacité de divers métaux Fe, Cu, Mn, Pd et même Zn d'initier des réactions d'addition radicalaire des $R_{\rm F}I$ à certains composés insaturés autres que les acétates de vinyle et d'allyle.

^{**}Dans nos synthèses ce composé a été isolé pour $R_F = C_8 F_{17}$ et comparé avec un échantillon authentique préparé selon [6].

Réaction de R_FI avec l'acétate de vinyle et du zinc en poudre dans divers solvants (cf. Tableau 2)

L'orientation de cette réaction (1) vers l'espèce difonctionnelle 2c pouvait donc se concevoir à travers un même processus faisant intervenir du zinc, mais dans lequel, le solvant utilisé ne conduirait pas à une étape de réduction aboutissant à 2b, mais sélectivement à l'étape de dimérisation.

A titre d'exemple le Tableau 2 montre l'évolution des produits de la réaction $C_6F_{13}I$, acétate de vinyle, zinc, dans divers solvants.

1. Dans les milieux à caractère fortement protique (lignes a, b, c, d), la réaction conduit à une prépondérance du produit d'addition-réduction **2b**.

2. Dans des milieux à caractère faiblement protique: acides, alcools en quantités équimolaires à R_FI , dilués dans un solvant non protique (ligne e et g) ou dans un solvant franchement aprotique (ligne h), il est observé la formation prépondérante de composés d'addition-dimérisation **2c**. Ce composé est formé de la façon la plus largement majoritaire dans les solvants aprotiques chlorés, dichlorométhane ou chloroforme selon la réaction (2).

3. Les produits secondaires de la réaction: R_FH (Tableau 2, lignes a, b, c, d, f): sa formation est importante dans les réactions effectuées en présence de solvants protiques, elle peut s'expliquer par l'hydrolyse d'un organozincique [R_FZnI]. Cet organométallique est curieusement obtenu relativement stabilisé (plusieurs jours) dans les réactions effectuées en milieu méthanolique (Tableau 2, ligne f). Une optimisation de la préparation de ce composé a été réalisée [11]. $R_FCH_2CH_2OAc$: la présence de ce composé peut s'expliquer par la réduction d'un dérivé intermédiaire $R_FCH_2CHIOAc$ (2a), observée, quel que soit le mélange de solvant utilisé*. R_FCH_2CHO : cet aldéhyde polyfluoré (Tableau 2, lignes e, g, h) ou ses dérivés acétal (ligne g) et acylal (ligne e) ont pu être mis en évidence respectivement dans les réactions effectuées en milieu MeOH/CH₂Cl₂ ou CH₃CH₂CO₂H/CH₂Cl₂. Une étude plus poussée de la formation de tels composés a pu être effectuée [12].

Réaction de R_FI avec l'acétate d'allyle et du zinc dans des solvants aprotiques

La réaction décrite dans le cas de l'acétate de vinyle, dans les conditions optimales d'obtention de la forme dimère (Tableau 2, ligne h), a été effectuée dans les mêmes conditions, avec cette fois, de l'acétate d'allyle; elle conduit avec d'assez bons rendements au diacétate polyfluoré **3c** suivant la réaction (3).

^{*}Dans les solvants aprotiques, c'est une réaction secondaire classique de la réaction de Wurtz [13].

01
AU.
Ē
ē
F

solvants
divers
dans
zinc ^a ,
de
présence
en
vinyle ^a ,
de
l'acétate
avec
3I ^a
${}^{6}F_{1}$
C O
đ
Réaction

Solvan	ţs		Temps de réaction (h)	R _r CH ₂ CH ₂ OAc (% mol)	$egin{array}{c} { m R_rCH_2CHOAc} { m R_rCH_2CHOAc} { m R_rCH_2CHOAc} (\% { m mol}) \end{array}$	Autres produits fluorés (% mol)
(a)	CH ₃ CO ₂ H		3	35	29	R _r H (35)
ව	CH ₃ CH ₂ CO ₂ H		ł	60	26	$R_{\rm r}H$ (15)
<u>ම</u>	CH ₃ CH ₂ CO ₂ H/C ₆ H ₆	$(20:80)^{b}$	I	75	21	$R_{\rm F}H$ (<5)
(P	CH ₃ CH ₂ CO ₂ H/dioxan	$(66:34)^{b}$	I	67	18	$R_{\rm F}H$ (13)
(e)	CH3CH2CO2H/CH2Cl2	(25:75) ^b	1	15	50	$R_{\rm F}CH_2CHO (10-15)$ $R_{\rm F}CH_2CH(O_2CCH_2CH_3)_2 (15-20)$
Ð	MeOH pur		I	<5	<5	$R_{\rm F}$ H (75) $R_{\rm F}$ Znl (15)
B	MeOH/CH ₂ Cl ₂	(13:87) ^b	I	15	57	R _F CH ₂ CHO (10–15) R ₄ CH ₂ CH(OMe), (15–20)
િ	CH ₂ Cl ₂ ^e		3-5	15	65 ^d	$R_{\rm F}CH_2CHO$ (15)
20.08						

U,U5 mol.

^bProportions volumiques.

°CH₂Cl₂, CHCl₃, CH₂Cl–CH₂Cl peuvent être employés indifféremment dans les réactions faisant intervenir C₄F₃I. Le CH₂Cl–CH₂Cl ne permet pas de solubiliser correctement le C₆F_{1,3}I et le C₈F_{1,7}I. Ce solvant n'est pas employé dans les réactions effectuées avec ces produits. La réaction du C8F17I en l'absence de tout agent protique nécessite une élévation de température (reflux du solvant), les temps de réactions sont respectivement de 3 h (C_4F_9), 4 h (C_6F_{13}) et 5 h (C_8F_{17}). ^dLes % des différents diesters ($R_r = C_4F_9$, C_6F_{13} et C_8F_{17}) sont détaillés dans la partie expérimentale.

$$R_{F}I + CH_{2} = CH-CH_{2}OAC \qquad \frac{Zn}{40^{\circ}C, CH_{2}Cl_{2}} \qquad R_{F}CH_{2}CH_{2}CH_{2}OAc \qquad 20-25\%$$
(3b)
$$+ R_{F}-CH_{2}-CH-CH_{2}OAc \qquad (3)$$

$$R_{F}-CH_{2}-CH-CH_{2}OAc \qquad (3)$$

$$R_{F}-CH_{2}-CH-CH_{2}OAc \qquad (3)$$

$$+ CH_{2}-CH-CH_{2}OAc \qquad (3)$$

Obtention de diols à chaînes fluorées par hydrolyse des acétates correspondants

Les diacétates 2c et 3c sont hydrolysés par des quantités équimolaires de potasse suivant les réactions (4).

$$\begin{array}{ccc} R_{F}-CH_{2}-CH-(CH_{2})_{n}-OAc & KOH & R_{F}-CH_{2}-CH-(CH_{2})_{n}OH \\ R_{F}-CH_{2}-CH-(CH_{2})_{n}-OAc & MeOH & R_{F}-CH_{2}-CH-(CH_{2})_{n}OH \\ & n=0;(2c) & n=0;(4c) \\ n=1;(3c) & n=1;(5c) \end{array}$$
(4)

A l'exception du composé 5c ($R_F = C_4 F_9$) ces diols sont des composés solides. Ils sont obtenus avec des rendements $\geq 95\%$.

Aspect stéréochimique

Les diacétates 2c et 3c et les diols correspondants 4c et 5c sont préparés sous forme *thréo* et *méso*. Ces diastéréoisomères n'ont pu être séparés, les isomères des diols 4c (nommés arbitrairement isomère A et isomère B) présentent des signaux distincts au niveau du spectre no. 1 de RMN ¹H (235 MHz).

C₆F₁₃CH₂CHOH

Spectre no. 1. Signaux des protons -OH et -CHOH des isomères (A) et (B).

Partie expérimentale

Les spectres de résonance magnétique nucléaire ont été enregistrés sur un appareil Varian EM 360 travaillant à 56,4 MHz ¹⁹F et 60 MHz ¹H, ainsi que sur un appareil Bruker AC 250 travaillant à 235,36 MHz pour ¹⁹F et 250,13 MHz pour ¹H. Les déplacements chimiques dans le cas du ¹⁹F sont comptés négativement à partir de CCl_3F à champ croissant, les déplacements chimiques dans le cas du ¹H sont comptés positivement à partir de SiMe₄ à champ décroissant. Les signaux sont caractérisés par leur déplacement en ppm, leurs constantes de couplage J en Hz ainsi que par leur multiplicité. Les spectres IR ont été enregistrés au moyen d'un appareil Perkin-Elmer 1420, les spectres de masse au moyen d'un appareil JEOL JMS D100.

Les points de fusion et d'ébullition ont été mesurés sur un appareil de Tottoli; ils ne sont pas corrigés.

Les analyses ont été effectuées par le Service Central de Microanalyse du Centre National de la Recherche Scientifique.

Les produits fluorés de départ ont été fournis par la Société Elf Atochem.

Protocole général

Dans un Erlen rodé de 100 ml, surmonté d'un réfrigérant, 17,3 g de C_4F_9I (0,05 mol), ou 22,3 g de $C_6F_{13}I$ (0,05 mol), ou 27,3 g de $C_8F_{17}I$ (0,05 mol) sont ajoutés lentement à une dispersion de 3,27 g de zinc (0,05 mol) et 4,3 g d'acétate de vinyle (0,05 mol) dans 15 ml de solvant, avec 3,7 g d'acide propionique (0,05 mol) ligne (e) ou 1,6 g de méthanol (0,05 mol) ligne (g) (cf. Tableau 2).

Les temps de réaction sont de 3 h pour le C_4F_9I , 4 h pour le $C_6F_{13}I$ et 5 h pour le $C_8F_{17}I$. Le milieu réactionel est ensuite filtré, lavé une fois avec une solution d'HCl 0,1 N, puis deux fois à l'eau, la phase organique est récupérée, séchée par Na₂SO₄ anhydre, le solvant est distillé sous pression réduite.

Le pourcentage de chaque espèce est calculé à partir de l'intégration des différents signaux distincts caractéristiques en RMN ¹H: CHOAc (**2c**), CH_2OAc (**2b**), R_FCH_2CHO , $R_FCH_2CH(O_2CH_2CH_3)_2$, $R_FCH_2CH(OMe)_2$, par la formule $(hi/Ni)/(\Sigma hi/Ni) \times 100$, où hi représente la hauteur d'intégration du signal fonctionnel et Ni le nombre d'atomes lui correspondant.

Spectre no. 2. Spectre de l'addition de R_FI à l'acétate de vinyle en cours de réaction (cf. Tableau 2, exp. e).

Identification

Les produits sont identifiés par comparaison spectrale RMN ¹H et ¹⁹F avec des échantillons authentiques préparés pour les produits principaux comme suit, pour les produits secondaires suivant divers procédés: R_FZnI [11]; R_FCH_2CHO , $R_FCH_2CH(OMe)_2$, $R_FCH_2CH(O_2CCH_2CH_3)_2$ [12].

Synthèse des diacétates de 1,4-bis(perfluoroalkyl)butane-2,3-diol (2c)

Les réactions sont effectuées selon le protocole général, dans ce cas le solvant employé est dichlorométhane ou le chloroforme. Les produits récupérés sont distillés; rendements en diacétate **2c**: F-alkyl $C_4F_9 = 72\%$, $C_6F_{13} = 66\%$ et $C_8F_{17} = 60\%$.

Diacétate du 1,4-bis(perfluorobutyl)butane-2,3-diol): Eb, 100 °C/10⁻¹ mmHg. IR (ν cm⁻¹): ν (C-F) = 1350-1100; ν (C=O) = 1750; ν (C-H) = 2990. RMN ¹⁹F (Bruker AC 250) (CDCl₃) δ : CF₃ = -81,72 (m, 6F); CF₂CH₂ (système AB, 4F) = -113,99 et -115,12 (J_{AB} = 279 Hz (4F)); CF₂CF₂CH₂ = -124,98 (m, 4F); CF₃CF₂ = -126,60 (m, 4F) ppm. RMN ¹H (Bruker AC 250) (CDCl₃) δ : CH₃CO₂ = 2,13 (s, 6H); R_FCH₂ = 2,38 (m, 4H); AcOCH = 5,56 (m, 2H) SM (m/z): 610 (M⁺); 550 (M - CH₃CO₂H⁻⁺); 530 (M - CH₃CO₂H - HF⁻⁺); 468 (M - 2CH₃CO₂H - HF - H₂⁻⁺).

Diacétate du 1,4-bis(perfluorohexyl)butane-2,3-diol: Eb, 123 °C/10⁻¹ mmHg. IR (ν cm⁻¹): ν (C–F) = 1350–1100; ν (C=O) = 1750; ν (C–H) = 3000. RMN ¹⁹F (Bruker AC 250) (CDCl₃) δ : CF₃ = -81,43 (m, 6F); CF₂CH₂ (système AB, 4F) = -113,63 et -114,80 (J_{AB} =272 Hz); CF₂CF₂CH₂ = -122,41 (m, 4F); CF₂(CF₂)₂CH₂ = -123,42 (m, 4F); CF₂(CF₂)₃CH₂ = -123,91 (m, 4F); CF₃CF₂ = -126,73 (m, 4F) ppm. RMN ¹H (Bruker AC 250) (CDCl₃) δ : CH₃CO₂ = 2,14 (s, 6H); R_FCH₂=2,38 (m, 4H); AcOCH=5,55 (m, 2H) ppm. SM (m/z): 807 (M – 3H⁻⁺); 747 (M – AcOH – H₂⁻⁺); 477 (M – C₆F₁₃CH₂⁻⁺); 433 (M – C₆F₁₃CH₂CH₂CH₃⁻⁺).

Diacétate du 1,4-bis(perfluoro-octyl)butane-2,3-diol: Eb, 140 °C/10⁻¹ mmHg. IR (ν cm⁻¹): ν (C-F)=1350–1100; ν (C=O)=1750; ν (C-H)=3000. RMN ¹⁹F (Bruker AC 250) (CDCl₃) δ : CF₃= -81,42 (m, 6F); CF₂CH₂ (système AB, 4F)= -113,38 et -114,37 (J_{AB} =268 Hz); CF₂CF₂CH₂= -122,23 (m, 4F); (CF₂)₂(CF₂)₂CH₂= -122,53 (m, 8F); CF₂(CF₂)₅CH₂= -123,35 (m, 4F); CF₃CF₂CF₂= -123,89 (m, 4F); CF₃CF₂= -126,76 (m, 4F) ppm. RMN ¹H (Bruker AC 250) (CDCl₃) δ : CH₃CO₂=2,14 (s, 6H); R_FCH₂=2,39 (m, 4H); AcOCH=5,55 (m, 2H) ppm. SM (m/z): 991 (M-F^{¬+}); 967 (M-CH₃CO^{¬+}); 952 (M-CH₃COCH₃^{¬+}); 948 (M-AcOH-H₂^{¬+}).

Synthèse des diacétates du 2,3-bis(perfluoroalkyl méthyl)butane-1,4diol (**3c**)

Les réactions sont effectuées selon le protocole général; la quantité d'acétate d'allyle mise en réaction est de 5 g (0,05 mol). Le solvant employé est le dichlorométhane, le temps de réaction est de 20 h. Les produits récupérés sont distillés; rendements en diacétate **4b**: F-alkyl $C_4F_9 = 60\%$, $C_6F_{13} = 55\%$ et $C_8F_{17} = 50\%$.

Diacétate du 2,3-bis(perfluorobutyl méthyl)butane-1,4-diol: Eb, 135 °C/ 10⁻¹ mmHg. IR (ν cm⁻¹): ν (C–F)=1350–1100; ν (C=O)=1735; ν (C–H) =2960. RMN ¹⁹F (Bruker AC 250) (CDCl₃) δ : CF₃=-81,54 (m, 6F); CF₂CH₂=-114,24 (m, ⁴F); CF₂CF₂CH₂=-124,88 (m, 4F); CF₃CF₂=-126,44 (m, 4F) ppm. RMN ¹H (Bruker AC 250) (CDCl₃) δ : CH₃CO₂=2,08 (s, 6H); R_FCH₂=2,21 (m, 4H); CH₃CO₂CH₂CH=2,53 (m, 2H); CH₃CO₂CH₂=4,13 (m, 4H) ppm. SM (*m*/*z*): 636 (M-H₂⁻⁺); 576 (M-AcOH-H₂⁻⁺); 533 (M-(Ac)O₂-H₂⁻⁺); 318 (M/2)-H⁻⁺).

Diacétate du 2,3-bis(perfluorohexyl méthyl)butane-1,4-diol: Eb, 135 °C/ 10^{-1} IR (ν cm⁻¹): $\nu(C-F) = 1350 - 1100; \quad \nu(C=O) = 1735;$ mmHg. ν (C-H) = 2960. RMN ¹⁹F (Bruker AC 250) (CDCl₃) δ : CF₃ = -81,44 (m, 4F); $CF_2CF_2CH_2 = -122.38$ 6F): $CF_2CH_2 = -114,06$ (m, (m. 4F): $CF_2(CF_2)_2CH_2 = -123,51$ (m, 4F); $CF_2(CF_2)_3CH_2 = -123,98$ (m, 4F): $CF_3CF_2 = -126,81$ (m, 4F) ppm. RMN ¹H (Bruker AC 250) (CDCl₃) δ : $CH_{3}CO_{2} = 2,08$ (s, 6H); $R_{F}CH_{2} = 2,13$ (m, 4H); $CH_{3}CO_{2}CH_{2}CH = 2,53$ (m, 2H); CH₃CO₂CH₂=4,13 (m, 4H) ppm. SM (m/z): 834 (M-2H₂⁺); 775 $(M - HF - CH_3CO^{+}); 731 (M - F_2 - CF_3^{+}); 518 (M - R_FH^{+}).$

Diacétate du 2,3-bis(perfluoro-octyl méthyl)butane-1,4-diol: Eb, 157 °C/ 10^{-1} mmHg. IR (ν cm⁻¹): ν (C-F)=1350-1110; ν (C=O)=1735; ν (C-H) = 2965. RMN ¹⁹F (Bruker AC 250) (CDCl₃) δ : CF₃ = -81,45 (m, 6F); $CF_{2}CH_{2} = -114.11$ $CF_2CF_2CH_2 = -121,21$ (m. 4F); (m. 4F): $(CF_2)_2(CF_2)_2CH_2 = -121,57$ (m, 8F); $CF_2(CF_2)_4CH_2 = -123,65$ (m, 4F); $CF_2(CF_2)_5CH_2 = -124,01$ (m, 4F); $CF_3CF_2 = -126,79$ (m, 4F) ppm. RMN ¹H (Bruker AC 250) (CDCl_a) δ : CH₃CO₂ = 2,08 (s, 6H); R_FCH₂ = 2,21 (m, 4H); $CH_3CO_2CH_2CH=2.53$ (m, 2H); $CH_3CO_2CH_2=4.13$ (m, 4H) ppm. $(M - F_2 - CF_3^{+});$ SM (m/z): 978 $(M - AcOH^{+})$; 931 548(M - $C_8F_{17}CH_2C(Et)HCH_2OAc^{+}; 486 (M/2 - CH_2F^{+}).$

Le produit secondaire $R_FCH_2CH_2CH_2OAc$ a été identifié par comparaison spectrale avec les données de la littérature [14]. Les formules des composés oléfiniques $R_FCH_2-CH=CH-OAc$ et $R_FCH=CH-CH_2OAc$ sont proposées à partir de l'analyse spectrale RMN ¹H. Les deux composés n'ont pas été séparés. RMN ¹H (Varian EM 360) (CDCl₃) δ : $CH_3CO_2 = 2,1$ (s, 3H); $R_FCH_2 = 2,5$ (m, 2H); $CH_3CO_2CH_2 = 4$ (m, 2H); H-C=C-H=5,5-7,0 (m, 2H) ppm.

Synthèse des 1,4-bis(perfluoroalkyl)butane-2,3-diol

Dans un Erlen rodé, surmonté d'un réfrigérant, 5,6 g de KOH (0,1 mol), dissous dans un minimum d'eau puis dans 5 ml de méthanol, sont additionnés lentement à 30,5 g de 1,4-bis(fluoroalkyl)butane-2,3-diol (0,05 mol) ou 40,5 g de 1,4-bis(fluoroalkyl)butane-2,3-diol (0,05 mol) 50,5 g de 1,4bis(fluoroalkyl)butane-2,3-diol (0,05 mol). Le milieu réactionnel est porté à reflux pendant 2 h. Le solvant est distillé sous pression réduite, le solide récupéré est repris à l'éther, la phase organique est lavée deux fois à l'eau, séchée par Na₂SO₄ anhydre, le solvant est distillé sous pression réduite; rdt. \geq 95%.

1,4-Bis(perfluorobutyl)butane-2,3-diol: F, 83 °C. IR (ν cm⁻¹): ν (C-F) = 1350–1100; ν (C-H) = 2900; ν (O-H) = 3600–3100. RMN ¹⁹F (Bru-

ker AC 250) (DMSO- d_6) δ : $CF_3 = -80,11$ (m, 6F); CF_2CH_2 (système AB, 4F) = -111,17 et -112,92 ($J_{AB} = 264$ Hz); $CF_2CF_2CH_2 = -123,80$ (m, 4F); $CF_3CF_2 = -125,24$ (m, 4F) ppm. RMN ¹H (Bruker AC 250) (DMSO- d_6) δ : Isomère A: $R_FCH_2 = 2,25$ (m, 4F); $CH_2 - CH - OH = 3,68$ (m, 2H); OH = 5,49(d, 2H) (J = 7 Hz). Isomère B: $R_FCH_2 = 2,65$ (m, 4F); $CH_2CH - OH = 3,95$ (m, 2H); OH = 5,39 (d, 2H) (J = 6 Hz) ppm. SM (m/z): 526 (M - OH ⁻⁺); 489 (M - OH - HF ⁻⁺); 469 (M - OH - 2HF ⁻⁺); 449 (M - OH - 3HF ⁻⁺). Analyse: $C_{12}H_8F_{18}O_2$ trouvé: C = 27,19; H = 1,56; F = 65,33%. Calculé: C = 27,39; H = 1,53; F = 64,99%.

1,4-Bis(perfluorohexyl)butane-2,3-diol: F, 99 °C. IR (ν cm⁻¹): ν (C-F) = 1350-1100; ν (C-H) = 2900; ν (O-H) = 3600-3100. RMN ¹⁹F (Bruker AC 250) (acétone- d_6) δ : CF₃ = -80,72 (m, 6F); CF₂CH₂ (système AB, 4F) = -111,51 et -113,14 (J_{AB} =279 Hz); CF₂CF₂CH₂ = -121,30 (m, 4F); CF₂(CF₂)₂CH₂ = -122,26 (m, 4F); CF₂(CF₂)₃CH₂ = -123,13 (m, 4F); CF₃CF₂ = -125,78 (m, 4F) ppm. RMN ¹H (Bruker AC 250) (acétone- d_6) δ : Isomère A: R_FCH₂=2,40 (m, 4H); CH₂CH-OH=5 (m, 2H); OH=4,72 (d, 2H) (J=6,6 Hz). Isomère B: R_FCH₂=2,7 (m, 4H); CH₂-CH-OH=4,22 (m, 2H); OH=4,58 (d, 2H) (J=6,5 Hz) ppm. SM (m/z): 707 (M-F^{¬+}); 688 (M-HF-H₂O^{¬+}); 363 (M/2⁺); 343 (M/2-HF^{¬+}). Analyse: C₁₆H₈F₂₆O₂ trouvé: C=27,27; H=1,55; F=68,99%. Calculé: C=26,46; H=1,11; F=68,02%.

1,4-Bis(perfluoro-octyl)butane-2,3-diol: F, 133 °C. IR (ν cm⁻¹): ν (C-F) = 1350-1100; ν (C-H) = 2900; ν (O-H) = 3600-3100. RMN ¹⁹F (Bruker AC 250) (acétone- d_6 /F113) δ : CF₃ = -80,67 (m, 6F); CF₂CH₂ (système AB, 4F) = -111,31 et -113,11 (J_{AB} = 280 Hz); CF₂CF₂CH₂ = -121,07 (m, 4F); (CF₂)₂(CF₂)₂CH₂ = -121,39 (m, 8F); CF₂(CF₂)₄CH₂ = -122,21 (m, 4F); CF₃CF₂CF₂ = -123,09 (m, 4F); CF₃CF₂ = -125,72 (m, 4F) ppm. RMN ¹H (Bruker AC 250) (acétone- d_6 /F113) δ : Isomère A: R_FCH₂=2,35 (m, 4H); CH₂-CH-OH=4,57 (m, 2H); OH=6,04 (d, 2H) (J=8,5 Hz). Isomère B; R_FCH₂=2,80 (m, 4H); CH₂-CH-OH=4,60 (m, 2H); OH=4,69 (d, 2H) (J=6,3 Hz) ppm. SM (m/z): 885 (M-2HF-H₂⁻⁺); 491 (M-C₈F₁₇O⁻⁺); 461 (M/2-H₂⁻⁺); 393 (M/2-CF₃H⁻⁺). Analyse: C₂₀H₈F₃₄O₂ trouvé: C=25,17; H=0,64; F=70,38%. Calculé: C=25,93; H=0,87; F=69,74%.

Synthèse des 2,3-bis(perfluoroalkyl méthyl)butane-1,4-diol

Le mode opératoire est identique à celui utilisé pour la synthèse des 1,4-bis(fluoroalkyl)butane-2,3-diols hormis les quantités de diesters **3c** employées qui sont: 41,9 g de 2,3-bis(fluorobutyl méthyl)butane-1,4-diol (0,05 mol) ou 61,9 g de 2,3-bis(fluorohexyl méthyl)butane-1,4-diol (0,05 mol). Le temps de réaction est de 12 h, rdt \ge 95%.

2,3-Bis(perfluorobutyl méthyl)butane-1,4-diol: Eb, 267 °C. IR (ν cm⁻¹): ν (C-F) = 1350–1100; ν (C-H) = 2920; ν (O-H) = 3600–3100. RMN ¹⁹F (Bruker AC 250) (DMSO- d_6) δ : CF₃ = -81,54 (m, 6F); CF₂CH₂ = -113,16 (m, 4F); CF₂CF₂CH₂ = -124,42 (m, 4F); CF₃CF₂ = -126,14 (m, 4F) ppm. RMN ¹H (Bruker AC 250) (DMSO- d_6 δ : R_FCH₂CH=2,25 (m, 6H); CH₂-OH=3,51 (m, 4H); OH = 4,88 (m, 2H) ppm. SM (m/z): 552 (M – H₂⁻⁺); 534 (M – HF⁻⁺); 516 (M-HF-H₂O⁺). Analyse: $C_{14}H_{12}F_{18}O_2$ trouvé: C=30,30; H=2,21; F=61,46%. Calculé: C=30,34; H=2,18; F=61,70%.

2,3-Bis(perfluorohexyl méthyl)butane-1,4-diol: F, 36 °C. IR (ν cm⁻¹): ν (C-F)=1350-1100; ν (C-H)=2920; ν (O-H)=3600-3100. RMN ¹⁹F (Bruker AC 250) (DMSO-d₆) &: CF₃=-80,83 (m, 6F); CF₂CH₂=-112,63 (m, 4F); CF₂CF₂CH₂=-121,34 (m, 4F); CF₂(CF₂)₂CH₂=-122,49 (m, 4F); CF₂(CF₂)₃CH₂=-123,04 (m, 4F); CF₃CF₂=-123,82 (m, 4F) ppm. RMN ¹H (Bruker AC 250) (DMSO-d₆) &: R_FCH₂CH=2,25 (m, 6H); CH₂OH=3,51 (m, 4H); OH=4,88 (m, 2H) ppm. SM (m/z): 733 (M-H-HF⁺); 702 (M-O₂-HF⁺); 435 (M-C₆F₁₃⁺); 385 (M-C₇F₁₅⁺). Analyse: C₁₈H₁₂F₂₆O₂ trouvé: C=28,75; H=1,63; F=65,50%. Calculé: C=28,66; H=1,60; F=65,49%.

2,3-Bis(perfluoro-octyl méthyl)butane-1,4-diol: F, 95 °C. IR (ν cm⁻¹): ν (C-F) = 1350-1100; ν (C-H) = 2920; ν (O-H) = 3600-3100. RMN ¹⁹F (Bruker AC 250) (DMSO- d_6) δ : CF₃ = -80,62 (m, 6F); CF₂CH₂ = -112,48 (m, 4F); CF₂CF₂CH₂ = -121,05 (m, 4F); (CF₂)₂(CF₂)₂CH₂ = -121,40 (m, 8F); CF₂(CF₂)₅CH₂ = -122,23 (m, 4F); CF₃CF₂CF₂ = -122,92 (m, 4F); CF₃CF₂ = -125,70 (m, 4F) ppm. RMN ¹H (Bruker AC 250) (DMSO- d_6) δ : R_FCH₂CH = 2,25 (m, 6H); CH₂OH = 3,51 (m, 4H); OH = 4,88 (m, 2H) ppm. SM (m/z): 908 (M - CH₃CH₂OH); 866 (M - HOCH₂CH = CHCH₂OH⁻⁺); 486 (M - C₈F₁₇CH₂CH₃ - HF⁻⁺); 427 (M/2 - CF₂⁻⁺). Analyse: C₂₂H₁₂F₃₄O₂ trouvé: C = 27,70; H = 1,12; F = 68,14\%. Calculé: C = 27,69; H = 1,27; F = 67,69\%.

Remerciements

A travers Messieurs J. P. Schirmann, A. Lantz et P. Durual, nous remercions la Société Atochem pour l'aide apportée à la réalisation de ce travail.

Références

- 1 A. Ayari, S. Szonyi, E. Rouvier et A. Cambon, J. Fluorine Chem., 50 (1990) 67.
- 2 A. Battais, B. Boutevin, J. P. Hugon et Y. Pietrasanta, J. Fluorine Chem., 16 (1980) 397, et références citées.
- 3 L. B. Loudas et H. Vogel, US Pat. 3 733 349 (1973) [Appl. 741 308 (1968)].
- 4 (a) D. E. Field et J. R. Griffith, Ind. Eng. Chem., Prod. Res. Dev., 14 (1975) 52; (b) J. R. Griffith, Chemtech, 12 (1982) 290.
- 5 (a) J. D. Park, F. E. Rogers et J. R. Lacher, J. Org. Chem., 26 (1961) 2089;
 (b) Y. Amimoto, S. Daimon et M. Okamoto (Daikiu Kogyo Co. Ltd.), Jpn. Pat. 7 884 909 (1978) [Chem. Abs., 89 (1978) 914 891c].
- 6 N. O. Brace, J. Org. Chem., 27 (1962) 3033.
- 7 M. W. Whitehouse et I. F. Skidmore, Biochem. Pharmacol., 16 (1967) 911.
- 8 K. Toshio, A. Ryouji, S. Hidehiro, K. Masashi et T. Tatsud, Chem. Lett., (1987) 1435.
- 9 H. Blancou, A. Commeyras et R. Teissedre, *Brevet Fr. 2 480 742* (1982) [Demande 8 008 721 (1980)].
- 10 Q. Y. Chen, Z. Qiu et Z. Y. Yang, J. Fluorine Chem., 36 (1987) 149.
- 11 P. Laurent, H. Blancou et A. Commeyras, New J. Chem., soumis à publication.
- 12 P. Laurent, H. Blancou et A. Commeyras, Tetrahedron Lett., 33 (1992) 2489.
- 13 I. P. Beletskaya, G. A. Artamkina et O. A. Reutov, Russ. Chem. Rev., 45 (1976) 330.
- 14 N. O. Brace, J. Fluorine Chem., 20 (1982) 313.